5 Laws of Ecology	Meaning
Everything is connected to everything else	 What affects one part of the ecosystem will also affect something else (i.e. food chains/webs, human influence, abiotic/biotic interactions)
Everything is always changing	 Natural systems are not static Landscapes (i.e. erosion, river flow, natural disasters) Animals adapting to their environment
There is no such thing as "away"	 There is no "away" to which things can be sent Matter can't disappear and has to be dealt with, can be converted into other forms
No such thing as a free lunch	 Everything has a cost Environmental, social, economic costs Can be hidden
Earth has limits	 Earth does not have unlimited resources that we can continue to take from forever Water/air/soil cannot absorb an infinite amount of waste

3 Pillars of Sustainability (3Ps)	Meaning
People (Social)	 We need to make sure that across the globe, people have a high quality of life without being too damaging to the environment For example, it would be much better for the environment if we abolished cars, but this would mean that people might not be able to get to work/school and so we have to continue to used them. What's best for the environment is not necessarily best for people.
Prosperity (Economic)	 We need to sustain the economy and keep it from affecting the environment. For example, it would be best for the economy to keep drilling oil and creating more jobs/exports, but this would be terrible for the environment. We need to keep both balanced to prevent a system collapse.

Planet (Environmental)	 We often forge that the environment and its resources are limited and take it for granted. Have to protect environment from economic greed Renewable energy, reducing emissions, sustainable fishing/agriculture, recycling, etc.
------------------------	---

Blue Marble Image (1972)

– First full image of Earth from outer space, huge emotional impact, people started to care more about the Earth

Environmental Science:

- The study of the interaction between living and non-living components of the environment
- Special emphasis on issues (human influence) and solutions (\$\$\$)

Environmentalism:

- Broad social movement dedicated to protecting the earth's life support systems for us and other species
- Ethical, moral, religious, spiritual, aesthetic reasons
- Aboriginal wisdom (traditional knowledge)

Environmental Timeline:

	Thomas Malthus (1798):	
A: Pre-environmental	- "Doctrine of Population Growth and Resource Scarcity"	
Movement	- Said human pop. growth is faster than the growth of food supply	
1798-1830s	- Misery, starvation, disease, illness, etc.	
	John Stuart Mill (1848):	
	- Pop. growth and increasing wealth can't continue forever	
	- Growth/consumption must stabilize or we can't last forever	
	Henry David Thoreau (1854):	
	- Author, lived in the woods for a year \rightarrow Walden	
	- Promoted simplistic lifestyle, distinguished between urban/rural	
	lifestyle	
	- Vanishing wilderness, agricultural expansion, people were	
B: Conservation	alarmed	
Movement	- Clubs formed (Audubon Society, Sierra Club)	
1832-1960	- Preservation of wilderness/wildlife	
	- Not motivated by science	
	- Algonquin Park- 1893	

	- Smog events (London), Oil Spills, Birth Defects due to chemical	
C: Environmental	exposure, Water bodies catching on fire	
Movement	- 1962- Rachel Carson \rightarrow "Silent Spring"	
1960s-1970s	- Dangers of pesticide use & DDT	
	- Ecology \rightarrow study of how living organisms interact with their	
	environment and other species	
	- Tragedy of the Commons Idea developed	
	- 1970- First Earth Day, April 22	
	- New organizations formed and brought issues to public	
	attention, pressured GOV to respond (i.e. WWF, Greenpeace)	
	- Sustainability	
D: Sustainability	- Reduce, Reuse, Recycle	
Movement	- Incorporation of environmental design in products	
1980s-Now	- Growing concern for \rightarrow Nature Deficit Disorder	

Tragedy of the Commons:

- Applied to any free, public resource
- Those using the resource act independently and out of self interest
- "If I don't use it, someone else will."
- EVENTUALLY... depletion of the resource
- Proposed solutions \rightarrow Private property (fences), Co-operative groups to make laws
- Preserve the resources for future use

Overpopulation:

- Industrial revolution/medical advancements increased fertility rates, higher life expectancies, etc.
- 1600- ¹/₂ billion
- 1800- 1 billion
- 2000- 6 billion
- 2011- 7 billion (and counting)
- By 2050, we will peak at 9-10 billion
- Not an issue of physical space, but of resources (consumer society, developed nations vs. third world countries)
- All 7.4 billion of us could fit in Ontario with an average sized house
- Policies:
 - Some European countries → decreasing birth rates, want people to have more kids (pronatalist) → Tax incentives, less \$\$\$ for more children, future labour supply, implications of aging generation
 - China, overpopulated, one-child policy was instituted in order to maintain economic progress (1970 avg. 5.8 kids/woman, now avg. 0.6 kids/woman)
 - Issues → Government intrusion, Shrinking future work force, unbalanced sex ratio (abortion of female fetuses)
 - Policy benefited ECONOMY & ENVIRONMENT

Green Revolution:

- Agriculture
- Crop yields are increasing through the use of technology (GMOs, Irrigation, Fertilizers, etc.)

Food Chains vs. Food Webs:

- Both show the feed relationships and trophic levels
- Arrows point in the direction of energy flow
- Food webs are all the food chains in a ecosystem

Ecological Niche:

- A species lifestyle and relationship to all other organisms and resources in a particular ecosystem
- If two are similar, they compete

Biodiversity:

- Species Richness
- The number of different species in an ecosystem
- Deciduous Forest \rightarrow MOST
- Tundra/Desert \rightarrow LEAST

Abiotic:

- Non-living factors: temperature, pH, wind, clouds, water

Biotic:

- Living things: plants, animals, forests, rotting vegetation)

Predator:

- An animal that hunts and kills another animal for food

Scavenger:

- Searched for carrion to eat, raven, vulture

Detritivore:

- An organism that consumes dead matter and animal wastes (Ex. Earthworms and millipedes, maggot)

Decomposer:

- Organism that breaks down dead organisms and returns nutrients to soil (i.e. bacteria, fungi)

Habitat:

- The area an organism lives in

Producers:

- Make their own food (plants, algae, phytoplankton)

Consumers:

- Must eat other organisms for food (plants/animals)

Herbivore:

Only eat plants, PRIMARY CONSUMER _

Omnivore:

Eat plants and animals (bears and humans) _

Carnivore:

Only eats meat, Secondary/Tertiary consumer (wolf, falcon) _

*There are less individuals at the top of any food chain than at the bottom

Earth's 4 Spheres:

- 1. Lithosphere: Earth's outer crust
- 2. Hydrosphere: Water bodies
- 3. Atmosphere: Air/gas surrounding Earth (N2, O2, CO2, H2O)
- 4. Biosphere: All the living parts of Earth

Individual \rightarrow Species \rightarrow Population \rightarrow Community \rightarrow Ecosystem \rightarrow Biosphere

- I: A single organism -
- S: Organisms that mate and produce fertile offspring -
- P: All individuals of one species living in one area
- C: All living organisms in one area
- E: All biotic/abiotic components in a specific area
- B: A collection of similar ecosystems in an area -
- B: All the living parts of the erth -

Energy Pyramids:

- All energy in an ecosystem begins with the sun _
- As animals live and feed, the energy decreases at each trophic level -
- This is because energy is always lost through heat, movement and life processes -
- 90% is lost at each level, and 10% is passed up
- *MAX food chain length is 5/6 levels _

Population Levels:

- Increase \rightarrow Births, Immigration
- Decrease \rightarrow Deaths, Emmigration _
- % Population Growth = $\frac{(B+I)-(D+E)x \ 100}{initial \ population}$ _

Limiting Factors:

- Factors that limit population size
- Density Dependant: limits because of the size of the population (i.e. disease, habitat, food supply)
- The bigger the population, the more the factor will act)
- Density Independent: limits that affect the population regardless of its size (i.e. natural disaster, pesticides, global warming.)

Carrying Capacity:

- The maximum population of a single species that can be indefinitely supported by an ecosystem (usually fluctuates at an average)

Rachel Carson:

- DDT: deadly to wildlife (eagles, falcons) \rightarrow bird sanctuary was sprayed and birds were killed
- Forced people to see the environment in a new way
- Put it as a concern of the public
- Environmental laws (Senate held hearings about pesticides)

Photosynthesis & Cellular Respiration:

- CR: Glucose + Oxygen \rightarrow Carbon Dioxide + Water + Energy
 - C6H12O6 + O2 \rightarrow CO2 + H2O + Energy (ATP)
- P: Sunlight Energy + Water + Carbon Dioxide → Oxygen + Glucose
 Sunlight Energy + H2O + CO2 → O2 + C6H12O6

Competition:

- Organisms compete for a resource (food, water, habitat, mates)
- Interspecific \rightarrow Different Species
- Intraspecific \rightarrow Same Species
- Example: Wolf vs. Raven for a carcass, 2 Moose for mates

Symbiosis: Organisms live in close contact with each other

	Beneficial to both organisms	Clownfish & Sea Anemone
Mutualism		
	One is benefited, the other is hurt	Sea Lamprey and Fish
Parasitism		
Commensalism	One benefits, the other in unaffected	Bird & Tree

Geochemical Cycle:

	- Carbon \rightarrow The building block of life	
Carbon Cycle	- Found in sugars, fats, proteins, DNA, etc.	
	- CO2 gas in atmosphere	

	- Will dissolve in water (oceans)	
	- Fossil fuels – dead plant/ animal matter	
	- Buried and compressed over millions of years	
	- Ocean organisms – combine CO2 with calcium to form their shells (CaCO3)	
	- Inorganic: extracted from ores and minerals	
	- Organic: Found in plants and living things	
	- Resevoirs: oceans, plants, animals, rocks, etc.	
Nitrogen Cycle	- 79 % of air is Nitrogen Gas (N2)	
	- Crucial component of organic chemicals	
	- N2 in the air cannot be used directly by plants and animals	
	- Bacteria convert the nitrogen into nitrates, which plants take up through the	
	roots (nitrogen fixation)	
	- Animals eat the plants to get nitrogen	
	- When animals/plants die, decomposers convert compounds back into N2 and	
	back into the air and soil	
	- Precipitation- Rain, snow, hail, etc.	
Water Cycle	- Evaporation- liquid to vapour	
	- Condensation- gaseous h2o to liquid	
	- Infiltration- soaking into the ground	
	- Percolation- Water moves through soil	
	- Surface runoff- water runs along surface	
	- Groundwater flow- movement underground	

6 Biomes of Canada:

Tundra	-Permafrost, low vegetation (no trees), short growing season, low biodiversity
Boreal Forest/Taiga	-coniferous trees, ponds, lakes, bags, heavy snow, every province
Temperate Deciduous Forest	-highest biodiversity, rich soil, high rainfall, deciduous trees, here!
Grassland/Prairies	-low rainfall, can't support trees, rich/deep soils, converted to farms
Temperate Rainforest	-deciduous/evergreen trees, mild temp, most rainfall, tallest trees
Desert	-BC/Yukon, Sand or Sandy Soil, low rainfall, many days of sunshine

Ecological Footprint:

-measured in hectares (100m x 100m)

-How much area of land and water is required to live a certain lifestyle

Soil Formation:

- Soil is abiotic and biotic
- 50% porous spaces, 45% pulverized rock and 5% organic matter
- Rests on bedrock (parent material of the abiotic portion)
- Long slow process
- 3 cm of soil \rightarrow 500-1000 years
- Soil is constantly being eroded

Erosion:

- The movement of soil from one location to another

5 basic functions of soil:

- Medium for plant growth
- Habitat for soil organisms
- Engineering medium
- Water supply/purification
- Recycling nutrients and organic wastes

Weathering Types:

Mechanical	-Soil begins when rocks are broken down into smaller particles by natural forces (i.e. wind, water, ice)
Chemical	 -Chemicals from the rock, in water (acid rain) or even oxygen in the air further the erosion process -Change the chemical composition of the soil
Biological	-Plants, animals and microorganisms assist in either the mechanical or chemical weathering

Soil Horizons:

O- Organic Material : Leaf Litter (undecomposed)

- A- Topsoil (Surface Soil) → mineral and humus formed from decomposition of plants and leaves
- B- Subsoil \rightarrow accumulation of clay and organic materials, Most organic matter/soil life
- C- Unweathered bedrock (parent material)

Organic Matter: enhances water and nutrient holding capacity and improves soil structure

Humus: is usually dark and the "glue" that will hold soil particles together

Sand:

- 1-5 mm diameter (Biggest, highest permeability)

Silt:

0.1-10 mm (Middle, medium permeability)

Clay:

_

- 0.001 mm - 0.1 mm (smallest, low permeability)

Loam:

- Best soil for agricultural purposes
- Rich soils consisting of sand, silt, clay (40:40:20) and humus

Permeability:

- The rate at which water can flow through the soil (cm³ per hour)

Porosity:

- The volume of the spaces between the soil particles (can be filled with water or gas)

Soil Organisms:

- Earthworms, spiders, centipedes, beetles, bacteria, protozoans
- Decompositions of dead plants/animals
- Infiltration/storage of water (create channels and aggregates, increases water flow rate)
- Recycling nutrients (N into Nitrates)
- Topsoil & Organic Horizon
- Late spring-mid fall

Dust Bowl (1930-1936)

- American mid-west
- Decades of intense crop farming, plowing up the native grasslands, not allowing soil to "rest" and replenish itself, soil left exposed between plantings
- + severe drought = Dust Bowl
- Soil turned to dust and blew away (top layer gone \rightarrow 400,000 km³ of farmland useless)
- Stock market crash in 1929 meant years of poverty
- Roosevelt implemented Soil Conservation strategies by the late 1930's

Erosion:

- After erosion, soil may become pollution in water/air
- Land loses fertility
- Natural/Geologic \rightarrow rounding off of mountains, depositing of sediment in river deltas
- Accelerated Erosion \rightarrow Removes topsoil at an excessive rate due to anthropogenic causes

Factors affecting Erosion

- 1. Rainfall/run-off
- 2. Soil physical characteristics \rightarrow lower permeability = more erosion
- 3. Slope of the land \rightarrow steeper the slope, the greater the erosion
- 4. Root systems \rightarrow roots hold the soil in place

 Vegetation and residue cover → protects soil from raindrop splash, slows down movement of water t

Small-scale Solutions:

- 1. Silt fences → placed at the bottoms of slopes to hold the soil in place but let the water flow through, keeps sediment out of streams
- 2. Planting shrubs/trees → roots hold the soil in place, limbs and leaves slow the impact of rain and fallen leaves cover the ground

Agricultural Solutions:

- 1. Plant on the contour line \rightarrow planting around a slope rather than up and down, helps slow the flow of water, more time for water to enter soil instead of run off
- 2. Rotate crops → planting different crops on land from one year to the next, leaves residue on the surface to help hold the soil in place
- 3. Allowing the land to lie fallow \rightarrow no crops planted for 1 year, natural vegetation grows and a root, holds the soil in place
- 4. Terrace → ridges of earth pounds placed across a slope, allows for gradual drop of water flow, holds soil in place
- 5. Grassed strips → small strips covered with natural grass may be left near plowed areas slows the flow of water and helps keep gullies from farming
- 6. Diversion ditches → small ditches built across slopes to slow water movement and divert it to a safe outlet
- 7. Strip cropping → planting alternating strips of crop on sloping land, slows the flow of water and holds topsoil in place
- 8. Wind breaks \rightarrow rows of trees planted to slow blowing wind and help prevent wind erosion
- Crop residue → following harvest, leave residue on field, allows for decay and nutrient replenishment
- 10. No-till farming → instead of tilling and loosening the soul, seeds are driven into the ground, soil remains clumped and resists erosion